Control of the Singlet–Triplet Energy Gap in a Thermally Activated Delayed Fluorescence Emitter by Using a Polar Host Matrix

نویسندگان

  • Shota Haseyama
  • Akitsugu Niwa
  • Takashi Kobayashi
  • Takashi Nagase
  • Kenichi Goushi
  • Chihaya Adachi
  • Hiroyoshi Naito
چکیده

The photoluminescence properties of a thermally activated delayed fluorescence emitter, 1,2-bis(carbazol-9-yl)-4,5-dicyanobenzene (2CzPN), doped in a host matrix consisting of 1,3-bis(9-carbazolyl)benzene and a polar inert molecule, camphoric anhydride (CA), in various concentrations have been investigated. It is found that the addition of CA stabilizes only the lowest singlet excited state (S1) of 2CzPN without changing the energy level of the lowest triplet excited state (T1), leading to a reduction in the energy gap between S1 and T1. The maximum reduction of energy gap achieved in this work has been determined to be around 65 meV from the shift of the fluorescence spectrum and the temperature dependence of the photoluminescence decay rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical rationalization of the singlet-triplet gap in OLEDs materials: impact of charge-transfer character.

New materials for OLED applications with low singlet-triplet energy splitting have been recently synthesized in order to allow for the conversion of triplet into singlet excitons (emitting light) via a Thermally Activated Delayed Fluorescence (TADF) process, which involves excited-states with a non-negligible amount of Charge-Transfer (CT). The accurate modeling of these states with Time-Depend...

متن کامل

Uncovering Single-Molecule Photophysical Heterogeneity of Bright, Thermally Activated Delayed Fluorescence Emitters Dispersed in Glassy Hosts.

Recently developed all-organic emitters used in display applications achieve high brightness by harvesting triplet populations via thermally activated delayed fluorescence. The photophysical properties of these emitters therefore involve new inherent complexities and are strongly affected by interactions with their host material in the solid state. Ensemble measurements occlude the molecular de...

متن کامل

Calixarenes as High Temperature Matrices for Thermally Activated Delayed Fluorescence: C70 in Dihomooxacalix[4]arene.

Thermally activated delayed fluorescence (TADF) of 12C70 and 13C70 was observed up to 140 °C in a p-tert-butyldihomooxacalix[4]arene solid matrix, a temperature range significantly higher than that of previous TADF quantitative studies. An effective singlet-triplet energy gap of 29 kJ/mol and triplet formation quantum yields of 0.97 and 0.99 were measured for 12C70 and 13C70, respectively. The ...

متن کامل

Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs

Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increa...

متن کامل

The Role of Local Triplet Excited States and D‐A Relative Orientation in Thermally Activated Delayed Fluorescence: Photophysics and Devices

Here, a comprehensive photophysical investigation of a the emitter molecule DPTZ-DBTO2, showing thermally activated delayed fluorescence (TADF), with near-orthogonal electron donor (D) and acceptor (A) units is reported. It is shown that DPTZ-DBTO2 has minimal singlet-triplet energy splitting due to its near-rigid molecular geometry. However, the electronic coupling between the local triplet (3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017